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In the present paper we study generalized Jacobi weight functions on the unit
circle-the simplest weight functions with a finite number of algebraic
singularities-and asymptotic behavior of the reflection coefficients associated with
them. The real line analogues concerning the recurrence coefficients associated with
generalized Jacobi weight functions in the interval are obtained.C [994 Academic

Press. loc.

1. POLYNOMIALS ON THE UNIT CIRCLE

Let w(B) be a weight function on the interval [- n:, n:) and let
{epn(z)} ;:=~o denote the monic orthogonal polynomials, associated with this
weight function:

(1/2n) r epn(O epm(O w(e) de = 0,
-1[

(1)

In the present paper we investigate the behavior of the reflection coef­
ficients epn(O), corresponding to the generalized Jacobi weight functions
(GJWF) w(e):

where

,IV

w(e)=h(e) n 1(-U 2Y
"

v=l

(= exp(ie), C = exp(ie,,), (2)

2y" > - 1, y" # O. (3)

Regarding to the regular factor h(e), we shall assume that it is positive
differentiable function and for its derivative h're) the relation

w(b, h') = O(1/lln bl);

holds, where w(b,j) is modulus of continuity of the function j(B).
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The following assertion is the main result of our paper.

THEOREM 1. For the GJWF w(8) (2)-(4)

0< lim sup n ItPn(O)1 < Cf) (5)

holds.

In what follows C I , C2 , ••• denote positive constants depending on weight
function only. We write II· lip, I <,p < Cf) for the norm in LP space on the
unit circle (11·11 CL) for sup-norm).

For the weight functions w(8), belonging to Szego class, i.e., In W(8)EL I
,

the principal tool is the Szego function

D(w, z) = exp {( 1/4n) 5:" «( + z)«( - z) -I In Iv(8) d8},

For the GJWF w(8) (2) we have (cf. [1, Chap. 5, Sect. 3J)

( =exp(i8).

N

D(w,z)=D(h,z) n (1-Z(.:-I)''',
v=1

We start from the foliowing statement.

c = exp(i8,,). (6)

LEMMA 1. For the function D(z) = D(w, z) (6) there exists a polynomial
Tn(z) of degree at most n such that

(i) III - D(O Tn(OIiI = O(l/n), n -+ 00;

(ii) IID(O Tn(OII", = 0(1), n -+ 00, (= eiO
.

Proof To prove Lemma I we proceed in several steps.

Step 1. If the functions D1(z) and D 2(z) satisfy (i)--(ii), then so does
their product D(z) = D 1(z) D 2(z). Indeed, let polynomials Tn,j(z)
correspond to the functions Dj(z), )=1,2. Put 1= [n/2J and Tn(z)=
T,. I(Z) TI,2(z). Then

III-D(O Tn(OIII <, III-D 1(0 Ti,l(OIII

+ IIDI(O T" 1(011 CL) 111- D 2(0 T,. 2(0111 = O(l/n);

IID(O Tn(OII cc = IIDI(O T,. 1(0 D2(0 T" 2(011 cc = 0(1), n -+ 00.

Thus, it is sufficient to ensure the correctness of relations (i)-(ii) for every
factor in (6).

Step 2. Let D(z)= l-z and

m

Qm(z)=m- I L Zk

k=l
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so that //Qm//x=Qm(1)=l, //Qm//~=m-I. Put

Tn(z)=(1-z)-1(1_Q7(z)), 1= [n/3].

In this case

111- (1- 0 Tn(OIII = IIQ/(Oll ~ = I-I = O(1/n)

11(1- 0 Tn(Oll ex; = 111 - Q7(011x ~ 2.

Let us note an identity

from which it follows that

(7)

(8)

Step 3. Let D(z) = (1 - z )a, 0 < 0( < 1. Since the function f(z) =

(1 - Z)2 - a is analytic in the unit disk [[D = {Izl < I} and continuous in the
closed unit disk, then there exists a polynomial Pm(z) of degree at most m
such that

(9)

C 1 is an absolute constant (cf. [2, Chap. 3]). Put now

1= [n/3],

so that

111- (1- 0" Tn(OIII ~ 111- ((1-0 T/(Ofll,

+//((1-0 T/(0)2 (1-(1-0a- 2p/(O)II, =1, +12,

The first term I, is O(1/n) by virtue of Step 2. For the second term 12 we
have by (9)

12= 11(1 - oa (T/(0)2 ((1- 02-a - p/(O)lll

~C2na-2{f l(l-Oa(T,(Oflde
lei ";;n- 1

+ L-l<lel,,;;tr 1(1-0a (T,(Ofl de}

=C2na
-

2{I2' + In}.
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In view of (8),
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121~n2f 11-(I~d8~2nl-~.
101,,; n- 1

For 122 we have with regard to (7),

122 =} 1(1-0~-211(I-OT,((Wd8
n- I < 101"; It

~4J 1(1-0~-21 d8~C3nl-~.
n- 1 < 101,,; It

Thus /2 = O(1/n) and so (i) is proved. To prove (ii) we note that, as follows
from (9),

1(1-02-(1-0~PI(()I~ClI1-Wn~-2, (10)

11-(1-0~-2p,(OI~ClI1-(I~-2n~-2. (ll)

Therefore for 181 ~n- I we obtain, using (8) and (10),

sup 1(1- O~ Tn(OI = sup 1(1- O~ P,(()(T,(O)21 = 0(1),
101 ";n- I 101,,;n- 1

For n 1 < 181 ~ n we have with regard to (7) and (11)

sup 1(1- O~ Tn(OI
n- 1 < 101,,; It

sup 1(1-0 T,((W 1(1-0~-2 P,(OI =0(1),
n- I < \0\";,,

n --+ 00.

when n --+ 00, which proves (ii) in the present case.

Step 4. From the considerations of Steps 1-3 it follows that the rela­
tions (i )-(ii) are valid for the functions D(z) = (1 - z )~, ct > O. Let now
m): 1 be a positive integer (for our purposes it is sufficient to consider
m = 1). For D(z) = (1 - z) -m polynomial Tn(z) = (I - z)m obviously
satisfies (i )-(ii). Hence relations (i )-(ii) are valid for D(z) = (1 - z)~ for any
real ct.

Step 5. Let D(z)=D(h,z). We denote by qJn(z) = Knf1J n(Z), Kn>O the
system of orthonormal polynomials, associated with w(8),

(1/2n) r qJn(OqJm(Ow(8)d8=i5n.m,
It

( 12)
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and let ql:(z)=zn qln(1/z) be the reverse polynomials. As is known (cf. [3,
Thm. 1.2]), for the regular weight functions w(e) = h(e) (in particular, for
h(e), satisfying (4), the following estimate holds:

liD -I(h, 0- ql:(OII GC ~ C4 In nn -lw (1/n, h').

Under hypotheses (4) this implies (i)-(ii) for D(z) = D(h, z). Hence the
assertion of Lemma 1 is verified.

Proof of Theorem 1. We use the following expression for the reflection
coefficients (cf. [4, formula (4)]):

fP n+ I (O)=(K/2n)f" D-L(w,OfPn+1(Ow(e)de
-1r

=(K/2n)f (D- 1(w,O-Tn (O)fP n+ 1(O
-1r

x wee) de, K = lim Kn-

Here Tn(z) is an arbitrary polynomial of degree at most n. Therefore

/fPn + 1(0)1 ~ C5r /1 - D(w, 0 TAO//D-1(w, 0 fPn + 1(01 wee) de. (13)
-1r

It is known (cf. [5, p. 29; 6]), that the orthonormal polynomials qln(z),
corresponding to the GJWF wee) (2)-(4) admit the estimate on the unit
circle

N

C6 n {I(-CI+(n+l)-l}-i"
v=L

N

~/qln+I(OI~C7 n {I(-C/+(n+l)-l}-Y"
v=l

(14)

The same estimate is obviously true for the monic orthogonal polynomials
fPn(z) as well, since within the Szego class

0< Ko~ Kn < K< 00.

Using the explicit form of the Szego function D( K" z) (6) and the weight
function wee) (2), we obtain

(15)
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where J = {v: 1~ v~ N, yv < O}. Let a = (1/2) mink le k + 1-ek I. Consider
the sets

F= U Fj , f= [n, n)\r.
jEJ

We have (see (13), (15))

I(/)n+ ,(0)1 ~ C9 l: f .11 - D(w, 0 Tn(OI n {I' - CI ~(n + l)-I}lr,1 de
JEJ l) vEJ I' CI

+C
9
LII-D(w, 0 Tn(OI n {I'-CI +(n+ lr I}IY,I de

r VEJ I'-C1

=IIj+l.
jEJ

Let the polynomial Tn(z) in the previous relation correspond to the func­
tion D( w, z) by Lemma 1. On the set t we have 18 - 8v I > an -, for every
vE J, so that

and by means of Lemma I(i)

i ~ CII 111 - D(w, 0 Tn(OIII = O(I/n).

If 8 E F j , then by Lemma I(ii) we have

I j ~ Cl2 L
i

11- D(w, 0 TAOI f' -'jll'~(~j~ 1) -I VJI de

f {lei(O-OJ) -11 + (n + l)-I}I'IJI
~C'2111-D(w,OTn(OII:.c r

J
lei(O-OJ)-II d8

~ C 13n -IYJI f .Isin(e- 8)121 -ly,1 de
l)

= O(I/n), n -+ 00, (16)

and the right-hand inequality (5) is proved.
Proceeding to the proof of the left-hand inequality (5), we consider the

value (c[ [7, Chap. 2]):

(17)
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It easily follows from the right-hand inequality (5) (cf. [8, Thm. 4]) that
now

bn(w) = O(n- 1/2 ),

We will now show that

n -+ 00.

lim infn l/2 bAw»O.
n_ 00

(18 )

It is convenient to distinguish the following two cases.

1. Assume, that Yl<O. Let L1={e:le-ell~en-l}, where a suf­
ficiently small e > 0 will be chosen later on. By the triangle inequality

(2n )1/2 bn(w) ~ {L II - KnK -lqJ:(O D(w, (W def/2

~ {L IKnK-lqJ:(O D(w, (W def2 - (2eln)I!2.

Using the left-hand inequality (14) and the explicit form of the Szeg6
function (6), we obtain, as above in (16),

f f {I(-( l+n-I}2IYll
dIKnK-IqJ:(OD(w,(Wde~CI4d I(~CI de

en-I

~CI5n-2IYllf_on~l lel- 21 )'11 de

= CI6en-le-2IYll.

The constant C I6 here depends on the weight function w(e) only (but does
not depend on the choice of e). We can choose now the constant e from the
condition C16e-21Yll > 3, which entails

(2n) 1/2 bn(w) ~ (3 1/2 _ 21/2)(en -I )1 /2,

and so does the inequality (18).

2. Assume that}' I > O. By repeating the argument above, we obtain

(2rr)I!2 bn(w) ~ (2eln)I/2 - {L IKnK -lqJ:(O D(w, (W de} 1

/

2,

and as follows from the right-hand inequality (14),

LIKnK-ICP:(OD(w,(Wde~C17L{1(~((~~~_lr)'1 de

t:n- 1

~C18n2Yl Lon~l lel 2Y1 de

~ C
I9

en- Ie2)'I.



124 LEONID B. GOLINSKII

Choosing the constant (; from the condition C 19 (;2)'] < 1, we arrive at the
inequality

which proves (18).
Assume, on the contrary, that

i.e., limn_ex n Ilf>n(O)1 =0, and hence n Ilf>n(O)1 ~h, n~nl(b) for any

o< b < lim inf n 1/2 () n( 11' ).
n-+ :x:

But then (see (17»

(19)

()n(W)~t~~+I'lf>j(Owr/2~bn-l/2,

for n ~ n I (b). The latter relation contradicts (19) and so the left-hand
inequality (5) is established.

Theorem 1 is now completely proved.

EXAMPLE. We consider the Jacobi weight function wee) on the unit
circle,

and the corresponding orthogonal polynomials If>n(z), An explicit expres­
sion for the reflection coefficients in this case has been obtained in
[8, Sect. 2] (in formula (2.8) there, one has to replace n by n + 1):

Let k ~ 2 be a positive integer. We introduce a GJWF wk(e) = w(ke). It is
actually not hard to see that corresponding orthogonal polynomials
If>k. n(z) admit representation (cr. [9]):

Hence

n = 0, 1, ..., v= 0, 1, ... , k - 1.

If> (0) = {If>m/dO),
k.m 0,

m == 0 (mod k),
m;EO (mod k),



so that

REFLECTION COEFFICIENTS

0= lim inf n Ict>k, n(O)1 < lim sup n Ict>k, n(O)[ = [Yll + IY21.
n ...... x N-OO

2, POLYNOMIALS ON THE REAL LINE

125

We are now able to establish an analogue of Theorem 1 for the interval
[-1,1].

THEOREM 2, Letf(x) be a GJWF on the interval [-1,1],

N

f( x) = g(x) n Ix - x v 12~"
)'= 1

(21)

2oc,,> -1, ocv#O,

and g(x) is a positive differentiable function such that

w(<5, g') = 0(1//1n <5/), <5 --. 0.

Let Pn(x) be a system of orthonormal polynomials corresponding to the
weight function f(x) (21) and satisfying the recurrence formula

Then

an = 1/2 + O( l/n), n --. 00.

Proof We can transfer to the unit circle using the standard transforma­
tion w(8) =f(cos 8) Isin 81. It can be readily shown that the GJWF w(8)
satisfies the hypotheses of Theorem 1. Corresponding reflection coefficients
ct>AO) and the coefficients an' bn are related by means of the following for­
mulas, which have actually been found by Ya. L. Geronimus [10, Sect. 31]
(see also [11, formula (5.10)]):

4a~ = (l + ct>2n_2(0»(1- ct>~n_I(O»(l- ct>2n(O»,

2bn= ct>2n _ 1(0)( 1 - ct>2AO» - ct>211+ 1(0)( 1+ ct>2AO».

The rest is immediate from Theorem 1.

By using the main Theorem 1 we are able to investigate the asymptotics
of the second type of polynomials corresponding to the GJWF (2)-(4) and
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the smoothness properties (absolute continuity and the absence of mass
points) of the appropriate measure. These and some other problems
regarding the second type of polynomials will be treated elsewhere.
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