Reflection Coefficients for the Generalized Jacobi Weight Functions

Leonid B. Golinskil
Institute for Low Temperature Physics \& Engineering, Ukraine Academy of Sciences, Kharkov 310164, Ukraine
Communicated by Doron S. Lubinsky

Received August 21, 1992; accepted in revised form January 29, 1993

Abstract

In the present paper we study generalized Jacobi weight functions on the unit circle-the simplest weight functions with a finite number of algebraic singularities-and asymptotic behavior of the reflection coefficients associated with them. The real line analogues concerning the recurrence coefficients associated with generalized Jacobi weight functions in the interval are obtained. C 1994 Academic Press. Inc.

1. Polynomials on the Unit Circle

Let $w(\theta)$ be a weight function on the interval $[-\pi, \pi)$ and let $\left\{\Phi_{n}(z)\right\}_{n=0}^{\infty}$ denote the monic orthogonal polynomials, associated with this weight function:

$$
\begin{equation*}
(1 / 2 \pi) \int_{-\pi}^{\pi} \Phi_{n}(\zeta) \overline{\Phi_{m}(\zeta)} w(\theta) d \theta=0, \quad n \neq m, \zeta=e^{i \theta}, \Phi_{n}(z)=z^{n}+\cdots \tag{1}
\end{equation*}
$$

In the present paper we investigate the behavior of the reflection coefficients $\Phi_{n}(0)$, corresponding to the generalized Jacobi weight functions (GJWF) $w(\theta)$:

$$
\begin{equation*}
w(\theta)=h(\theta) \prod_{v=1}^{N}\left|\zeta-\zeta_{v}\right|^{2 \gamma_{v}}, \quad \zeta=\exp (i \theta), \zeta_{v}=\exp \left(i \theta_{v}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
-\pi \leqslant \theta_{N}<\theta_{N-1}<\cdots<\theta_{1}<\pi ; \quad 2 \gamma_{v}>-1, \gamma_{v} \neq 0 . \tag{3}
\end{equation*}
$$

Regarding to the regular factor $h(\theta)$, we shall assume that it is positive differentiable function and for its derivative $h^{\prime}(\theta)$ the relation

$$
\begin{equation*}
\omega\left(\delta, h^{\prime}\right)=O(1 /|\ln \delta|) ; \quad \delta \rightarrow 0 \tag{4}
\end{equation*}
$$

holds, where $\omega(\delta, f)$ is modulus of continuity of the function $f(\theta)$.

The following assertion is the main result of our paper.
Theorem 1. For the GJWF $w(\theta)(2)-(4)$

$$
\begin{equation*}
0<\limsup _{n \rightarrow \infty} n\left|\Phi_{n}(0)\right|<\infty \tag{5}
\end{equation*}
$$

holds.
In what follows C_{1}, C_{2}, \ldots denote positive constants depending on weight function only. We write $\|\cdot\|_{p}, 1 \leqslant p<\infty$ for the norm in L^{p} space on the unit circle ($\|\cdot\|_{\infty}$ for sup-norm).

For the weight functions $w(\theta)$, belonging to Szegő class, i.e., $\ln w(\theta) \in L^{1}$, the principal tool is the Szegö function

$$
D(w, z)=\exp \left\{(1 / 4 \pi) \int_{-\pi}^{\pi}(\zeta+z)(\zeta-z)^{-1} \ln w(\theta) d \theta\right\}, \quad \zeta=\exp (i \theta)
$$

For the GJWF $w(\theta)$ (2) we have (cf. [1, Chap. 5, Sect. 3])

$$
\begin{equation*}
D(w, z)=D(h, z) \prod_{v=1}^{N}\left(1-z \zeta_{v}^{-1}\right)^{\gamma}, \quad \zeta_{v}=\exp \left(i \theta_{v}\right) \tag{6}
\end{equation*}
$$

We start from the following statement.
Lemma 1. For the function $D(z)=D(w, z)$ (6) there exists a polynomial $T_{n}(z)$ of degree at most n such that
(i) $\left\|1-D(\zeta) T_{n}(\zeta)\right\|_{1}=O(1 / n), n \rightarrow \infty$;
(ii) $\left\|D(\zeta) T_{n}(\zeta)\right\|_{\infty}=O(1), n \rightarrow \infty, \zeta=e^{i \theta}$.

Proof. To prove Lemma 1 we proceed in several steps.
Step 1. If the functions $D_{1}(z)$ and $D_{2}(z)$ satisfy (i)-(ii), then so does their product $D(z)=D_{1}(z) D_{2}(z)$. Indeed, let polynomials $T_{n, j}(z)$ correspond to the functions $D_{j}(z), j=1,2$. Put $l=[n / 2]$ and $T_{n}(z)=$ $T_{l, 1}(z) T_{l, 2}(z)$. Then

$$
\begin{aligned}
\left\|1-D(\zeta) T_{n}(\zeta)\right\|_{1} \leqslant & \left\|1-D_{1}(\zeta) T_{l, 1}(\zeta)\right\|_{1} \\
& +\left\|D_{1}(\zeta) T_{l, 1}(\zeta)\right\|_{\infty}\left\|1-D_{2}(\zeta) T_{l, 2}(\zeta)\right\|_{1}=O(1 / n) \\
\left\|D(\zeta) T_{n}(\zeta)\right\|_{\infty}= & \left\|D_{1}(\zeta) T_{l, 1}(\zeta) D_{2}(\zeta) T_{l, 2}(\zeta)\right\|_{\infty}=O(1), \quad n \rightarrow \infty
\end{aligned}
$$

Thus, it is sufficient to ensure the correctness of relations (i)-(ii) for every factor in (6).

Step 2. Let $D(z)=1-z$ and

$$
Q_{m}(z)=m^{-1} \sum_{k=1}^{m} z^{k}
$$

so that $\left\|Q_{m}\right\|_{\infty}=Q_{m}(1)=1,\left\|Q_{m}\right\|_{2}^{2}=m^{-1}$. Put

$$
\hat{T}_{n}(z)=(1-z)^{-1}\left(1-Q_{l}^{2}(z)\right), \quad l=[n / 3] .
$$

In this case

$$
\begin{align*}
&\left\|1-(1-\zeta) \hat{T}_{n}(\zeta)\right\|_{1}=\left\|Q_{l}(\zeta)\right\|_{2}^{2}=l^{-1}=O(1 / n) \\
& \|(1-\zeta) \hat{T}_{n}(\zeta) \|_{\infty} \tag{7}\\
&=\left\|1-Q_{i}^{2}(\zeta)\right\|_{\infty} \leqslant 2 .
\end{align*}
$$

Let us note an identity

$$
\hat{T}_{n}(z)=\left(1+Q_{l}(z)\right) \frac{1-Q_{l}(z)}{1-z}=\left(1+Q_{l}(z)\right) \sum_{k=0}^{l-1}(1-k / l) z^{k},
$$

from which it follows that

$$
\begin{equation*}
\left\|\hat{T}_{n}(\zeta)\right\|_{\infty} \leqslant l+1 \leqslant n . \tag{8}
\end{equation*}
$$

Step 3. Let $D(z)=(1-z)^{\alpha}, \quad 0<\alpha<1$. Since the function $f(z)=$ $(1-z)^{2-x}$ is analytic in the unit disk $\mathbb{D}=\{|z|<1\}$ and continuous in the closed unit disk, then there exists a polynomial $P_{m}(z)$ of degree at most m such that

$$
\begin{equation*}
\left\|(1-\zeta)^{2-\alpha}-P_{m}(\zeta)\right\|_{\infty} \leqslant C_{1} m^{\alpha-2}, \tag{9}
\end{equation*}
$$

C_{1} is an absolute constant (cf. [2, Chap. 3]). Put now

$$
T_{n}(z)=P_{l}(z)\left(\hat{T}_{l}(z)\right)^{2}, \quad l=[n / 3],
$$

so that

$$
\begin{aligned}
\left\|1-(1-\zeta)^{x} T_{n}(\zeta)\right\|_{1} \leqslant & \left\|1-\left((1-\zeta) \hat{T}_{l}(\zeta)\right)^{2}\right\|_{1} \\
& +\left\|\left((1-\zeta) \hat{T}_{l}(\zeta)\right)^{2}\left(1-(1-\zeta)^{\alpha-2} P_{l}(\zeta)\right)\right\|_{1}=I_{1}+I_{2} .
\end{aligned}
$$

The first term I_{1} is $O(1 / n)$ by virtue of Step 2. For the second term I_{2} we have by (9)

$$
\begin{aligned}
I_{2}= & \left\|(1-\zeta)^{\alpha}\left(\hat{T}_{l}(\zeta)\right)^{2}\left((1-\zeta)^{2-\alpha}-P_{l}(\zeta)\right)\right\|_{1} \\
\leqslant & C_{2} n^{\alpha-2}\left\{\int_{|\theta| \leqslant n^{-1}}\left|(1-\zeta)^{\alpha}\left(\hat{T}_{l}(\zeta)\right)^{2}\right| d \theta\right. \\
& \left.+\int_{n^{-1}<|\theta| \leqslant \pi}\left|(1-\zeta)^{\alpha}\left(\hat{T}_{l}(\zeta)\right)^{2}\right| d \theta\right\} \\
= & C_{2} n^{\alpha-2}\left\{I_{21}+I_{22}\right\} .
\end{aligned}
$$

In view of (8),

$$
I_{21} \leqslant n^{2} \int_{|\theta| \leqslant n^{-1}}|1-\zeta|^{\alpha} d \theta \leqslant 2 n^{1-\alpha}
$$

For I_{22} we have with regard to (7),

$$
\begin{aligned}
I_{22} & =\int_{n^{-1}<|\theta| \leqslant \pi}\left|(1-\zeta)^{\alpha-2}\right|\left|(1-\zeta) \hat{T}_{l}(\zeta)\right|^{2} d \theta \\
& \leqslant 4 \int_{n^{-1}<|\theta| \leqslant \pi}\left|(1-\zeta)^{\alpha-2}\right| d \theta \leqslant C_{3} n^{1-\alpha}
\end{aligned}
$$

Thus $I_{2}=O(1 / n)$ and so (i) is proved. To prove (ii) we note that, as follows from (9),

$$
\begin{align*}
& \left|(1-\zeta)^{2}-(1-\zeta)^{\alpha} P_{l}(\zeta)\right| \leqslant C_{1}|1-\zeta|^{\alpha} n^{x-2} \tag{10}\\
& \quad\left|1-(1-\zeta)^{x-2} P_{l}(\zeta)\right| \leqslant C_{1}|1-\zeta|^{x-2} n^{x-2} \tag{11}
\end{align*}
$$

Therefore for $|\theta| \leqslant n^{-1}$ we obtain, using (8) and (10),

$$
\sup _{|\theta| \leqslant n^{-1}}\left|(1-\zeta)^{x} T_{n}(\zeta)\right|=\sup _{|\theta| \leqslant n^{-1}}\left|(1-\zeta)^{x} P_{l}(\zeta)\left(\hat{T}_{l}(\zeta)\right)^{2}\right|=O(1), \quad n \rightarrow \infty
$$

For $n^{1}<|\theta| \leqslant \pi$ we have with regard to (7) and (11)

$$
\begin{aligned}
& \sup _{n^{-1}<|\theta| \leqslant \pi}\left|(1-\zeta)^{\alpha} T_{n}(\zeta)\right| \\
& \quad=\sup _{n^{-1}<|\theta| \leqslant \pi}\left|(1-\zeta) \hat{T}_{1}(\zeta)\right|^{2}\left|(1-\zeta)^{\alpha-2} P_{l}(\zeta)\right|=O(1)
\end{aligned}
$$

when $n \rightarrow \infty$, which proves (ii) in the present case.
Step 4. From the considerations of Steps $1-3$ it follows that the relations (i)-(ii) are valid for the functions $D(z)=(1-z)^{\alpha}, \alpha>0$. Let now $m \geqslant 1$ be a positive integer (for our purposes it is sufficient to consider $m=1$). For $D(z)=(1-z)^{-m}$ polynomial $T_{n}(z)=(1-z)^{m}$ obviously satisfies (i)-(ii). Hence relations (i) (ii) are valid for $D(z)=(1-z)^{x}$ for any real α.

Step 5. Let $D(z)=D(h, z)$. We denote by $\varphi_{n}(z)=\kappa_{n} \Phi_{n}(z), \kappa_{n}>0$ the system of orthonormal polynomials, associated with $w(\theta)$,

$$
\begin{equation*}
(1 / 2 \pi) \int_{-\pi}^{\pi} \varphi_{n}(\zeta) \overline{\varphi_{m}(\zeta)} w(\theta) d \theta=\delta_{n, m} \tag{12}
\end{equation*}
$$

and let $\varphi_{n}^{*}(z)=z^{n} \overline{\varphi_{n}(1 / \bar{z})}$ be the reverse polynomials. As is known (cf. [3, Thm. 1.2]), for the regular weight functions $w(\theta)=h(\theta)$ (in particular, for $h(\theta)$, satisfying (4)), the following estimate holds:

$$
\left\|D^{-1}(h, \zeta)-\varphi_{n}^{*}(\zeta)\right\|_{\infty} \leqslant C_{4} \ln n n^{-1} \omega\left(1 / n, h^{\prime}\right) .
$$

Under hypotheses (4) this implies (i)-(ii) for $D(z)=D(h, z)$. Hence the assertion of Lemma 1 is verified.

Proof of Theorem 1. We use the following expression for the reflection coefficients (cf. [4, formula (4)]):

$$
\begin{aligned}
\overline{\Phi_{n+1}(0)}= & (\kappa / 2 \pi) \int_{-\pi}^{\pi} D^{-1}(w, \zeta) \overline{\Phi_{n+1}(\zeta)} w(\theta) d \theta \\
= & (\kappa / 2 \pi) \int_{-\pi}^{\pi}\left(D^{-1}(w, \zeta)-T_{n}(\zeta)\right) \overline{\Phi_{n+1}(\zeta)} \\
& \times w(\theta) d \theta, \quad \kappa=\lim _{n \rightarrow \infty} \kappa_{n} .
\end{aligned}
$$

Here $T_{n}(z)$ is an arbitrary polynomial of degree at most n. Therefore
$\left|\Phi_{n+1}(0)\right| \leqslant C_{5} \int_{-\pi}^{\pi}\left|1-D(w, \zeta) T_{n}(\zeta)\right|\left|D^{-1}(w, \zeta) \Phi_{n+1}(\zeta)\right| w(\theta) d \theta$.
It is known (cf. [5, p. 29; 6]), that the orthonormal polynomials $\varphi_{n}(z)$, corresponding to the GJWF $w(\theta)(2)-(4)$ admit the estimate on the unit circle

$$
\begin{align*}
& C_{6} \prod_{v=1}^{N}\left\{\left|\zeta-\zeta_{v}\right|+(n+1)^{-1}\right\}^{-\gamma_{v}} \\
& \quad \leqslant\left|\varphi_{n+1}(\zeta)\right| \leqslant C_{7} \prod_{v=1}^{N}\left\{\left|\zeta-\zeta_{v}\right|+(n+1)^{-1}\right\}^{-\gamma_{v}}, \quad \zeta_{v}=\exp \left(i \theta_{v}\right) \tag{14}
\end{align*}
$$

The same estimate is obviously true for the monic orthogonal polynomials $\Phi_{n}(z)$ as well, since within the Szegö class

$$
0<\kappa_{0} \leqslant \kappa_{n}<\kappa<\infty
$$

Using the explicit form of the Szegö function $D(w, z)$ (6) and the weight function $w(\theta)(2)$, we obtain

$$
\begin{align*}
\left|D^{-1}(w, \zeta) \Phi_{n+1}(\zeta)\right| w(\theta) & \leqslant C_{8} \prod_{v=1}^{N}\left\{\frac{\left|\zeta-\zeta_{v}\right|}{\left|\zeta-\zeta_{v}\right|+(n+1)^{-1}}\right\}^{\gamma} \\
& \leqslant C_{8} \prod_{v \in J}\left\{\frac{\left|\zeta-\zeta_{v}\right|}{\left|\zeta-\zeta_{v}\right|+(n+1)^{-1}}\right\}^{\gamma_{v}} \tag{15}
\end{align*}
$$

where $J=\left\{v: 1 \leqslant v \leqslant N, \gamma_{v}<0\right\}$. Let $a=(1 / 2) \min _{k}\left|\theta_{k+1}-\theta_{k}\right|$. Consider the sets

$$
\Gamma_{j}=\left\{\theta:\left|\theta-\theta_{j}\right| \leqslant a n^{-1}\right\}, \quad \Gamma=\bigcup_{j \in J} \Gamma_{j}, \quad \hat{\Gamma}=[\pi, \pi) \backslash \Gamma .
$$

We have (see (13), (15))

$$
\begin{aligned}
\left|\Phi_{n+1}(0)\right| \leqslant & C_{9} \sum_{j \in J} \int_{\Gamma_{j}}\left|1-D(w, \zeta) T_{n}(\zeta)\right| \prod_{v \in J}\left\{\frac{\left|\zeta-\zeta_{v}\right|+(n+1)^{-1}}{\left|\zeta-\zeta_{v}\right|}\right\}^{\left|v_{v}\right|} d \theta \\
& +C_{9} \int_{\hat{\Gamma}}\left|1-D(w, \zeta) T_{n}(\zeta)\right| \prod_{v \in J}\left\{\frac{\left|\zeta-\zeta_{v}\right|+(n+1)^{-1}}{\left|\zeta-\zeta_{v}\right|}\right\}^{\left|\gamma_{v}\right|} d \theta \\
= & \sum_{j \in J} I_{j}+\hat{I} .
\end{aligned}
$$

Let the polynomial $T_{n}(z)$ in the previous relation correspond to the function $D(w, z)$ by Lemma 1 . On the set $\hat{\Gamma}$ we have $\left|\theta-\theta_{v}\right|>a n^{-1}$ for every $v \in J$, so that

$$
\prod_{\nu \in J}\left\{\frac{\left|\zeta-\zeta_{\nu}\right|+(n+1)^{-1}}{\left|\zeta-\zeta_{\nu}\right|}\right\}^{\left|\gamma_{v}\right|} \leqslant C_{10}
$$

and by means of Lemma 1(i)

$$
\hat{I} \leqslant C_{11}\left\|1-D(w, \zeta) T_{n}(\zeta)\right\|_{1}=O(1 / n)
$$

If $\theta \in \Gamma_{j}$, then by Lemma 1 (ii) we have

$$
\begin{align*}
I_{j} & \leqslant C_{12} \int_{\Gamma_{j}}\left|1-D(w, \zeta) T_{n}(\zeta)\right|\left\{\frac{\left|\zeta-\zeta_{j}\right|+(n+1)^{-1}}{\left|\zeta-\zeta_{j}\right|}\right\}^{\left|\gamma_{j}\right|} d \theta \\
& \leqslant C_{12}\left\|1-D(w, \zeta) T_{n}(\zeta)\right\|_{\infty} \int_{\Gamma_{j}}\left\{\frac{\left|e^{i\left(\theta-\theta_{j}\right)}-1\right|+(n+1)^{-1}}{\left|e^{i\left(\theta-\theta_{j}\right)}-1\right|}\right\}^{\left|\gamma_{j}\right|} d \theta \\
& \leqslant C_{13} n^{-\left|y_{j}\right|} \int_{\Gamma_{j}}\left|\sin \left(\theta-\theta_{j}\right) / 2\right|^{-\left|\gamma_{j}\right|} d \theta \\
& =O(1 / n) \quad n \rightarrow \infty \tag{16}
\end{align*}
$$

and the right-hand inequality (5) is proved.
Proceeding to the proof of the left-hand inequality (5), we consider the value (cf. [7, Chap. 2]):

$$
\begin{equation*}
\delta_{n}(w)=\left\|1-\kappa_{n} \kappa^{-1} \varphi_{n}^{*}(\zeta) D(w, \zeta)\right\|_{2}=\kappa^{-1}\left\{\sum_{j=n+1}^{\infty}\left|\kappa_{j} \Phi_{j}(0)\right|^{2}\right\}^{1 / 2} \tag{17}
\end{equation*}
$$

It easily follows from the right-hand inequality (5) (cf. [8, Thm. 4]) that now

$$
\delta_{n}(w)=O\left(n^{-1 / 2}\right), \quad n \rightarrow \infty .
$$

We will now show that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} n^{1 / 2} \delta_{n}(w)>0 \tag{18}
\end{equation*}
$$

It is convenient to distinguish the following two cases.

1. Assume, that $\gamma_{1}<0$. Let $\Delta=\left\{\theta:\left|\theta-\theta_{1}\right| \leqslant \varepsilon n^{-1}\right\}$, where a sufficiently small $\varepsilon>0$ will be chosen later on. By the triangle inequality

$$
\begin{aligned}
(2 \pi)^{1 / 2} \delta_{n}(w) & \geqslant\left\{\int_{\Delta}\left|1-\kappa_{n} \kappa^{-1} \varphi_{n}^{*}(\zeta) D(w, \zeta)\right|^{2} d \theta\right\}^{1 / 2} \\
& \geqslant\left\{\int_{\Delta}\left|\kappa_{n} \kappa^{-1} \varphi_{n}^{*}(\zeta) D(w, \zeta)\right|^{2} d \theta\right\}^{1 / 2}-(2 \varepsilon / n)^{1 / 2} .
\end{aligned}
$$

Using the left-hand inequality (14) and the explicit form of the Szego function (6), we obtain, as above in (16),

$$
\begin{aligned}
\int_{4}\left|\kappa_{n} \kappa^{-1} \varphi_{n}^{*}(\zeta) D(w, \zeta)\right|^{2} d \theta & \geqslant C_{14} \int_{\Delta}\left\{\frac{\left|\zeta-\zeta_{1}\right|+n^{-1}}{\left|\zeta-\zeta_{1}\right|}\right\}^{2\left|\gamma_{1}\right|} d \theta \\
& \geqslant C_{15} n^{-2|\gamma 1|} \int_{-\varepsilon n^{-1}}^{\varepsilon n^{-1}}|\theta|^{-2\left|\gamma_{1}\right|} d \theta \\
& =C_{16} \varepsilon n^{-1} \varepsilon^{-2\left|\gamma_{1}\right|}
\end{aligned}
$$

The constant C_{16} here depends on the weight function $w(\theta)$ only (but does not depend on the choice of ε). We can choose now the constant ε from the condition $C_{16} \varepsilon^{-2|\%| \mid}>3$, which entails

$$
(2 \pi)^{1 / 2} \delta_{n}(w) \geqslant\left(3^{1 / 2}-2^{1 / 2}\right)\left(\varepsilon n^{-1}\right)^{1 / 2},
$$

and so does the inequality (18).
2. Assume that $\gamma_{1}>0$. By repeating the argument above, we obtain

$$
(2 \pi)^{1 / 2} \delta_{n}(w) \geqslant(2 \varepsilon / n)^{1 / 2}-\left\{\int_{\Delta}\left|\kappa_{n} \kappa^{-1} \varphi_{n}^{*}(\zeta) D(w, \zeta)\right|^{2} d \theta\right\}^{1 / 2},
$$

and as follows from the right-hand inequality (14),

$$
\begin{aligned}
\int_{\Delta}\left|\kappa_{n} \kappa^{-1} \varphi_{n}^{*}(\zeta) D(w, \zeta)\right|^{2} d \theta & \leqslant C_{17} \int_{A}\left\{\frac{\left|\zeta-\zeta_{1}\right|}{\left|\zeta-\zeta_{1}\right|+n^{-1}}\right\}^{2 \gamma_{1}} d \theta \\
& \leqslant C_{18} n^{2 \gamma_{1}} \int_{-\varepsilon n^{-1}}^{\varepsilon n^{-1}}|\theta|^{2 \gamma_{1}} d \theta \\
& \leqslant C_{19} \varepsilon n^{-1} \varepsilon^{2 \gamma_{1}} .
\end{aligned}
$$

Choosing the constant ε from the condition $C_{19} \varepsilon^{2 \gamma_{1}}<1$, we arrive at the inequality

$$
(2 \pi)^{1 / 2} \delta_{n}(w) \geqslant\left(2^{1 / 2}-1\right)\left(\varepsilon n^{-1}\right)^{1 / 2}
$$

which proves (18).
Assume, on the contrary, that

$$
\limsup _{n \rightarrow \infty} n\left|\Phi_{n}(0)\right|=0
$$

i.e., $\lim _{n \rightarrow \infty} n\left|\Phi_{n}(0)\right|=0$, and hence $n\left|\Phi_{n}(0)\right| \leqslant b, n \geqslant n_{1}(b)$ for any

$$
\begin{equation*}
0<b<\liminf _{n \rightarrow \infty} n^{1 / 2} \delta_{n}(w) . \tag{19}
\end{equation*}
$$

But then (see (17))

$$
\delta_{n}(w) \leqslant\left\{\sum_{j=n+1}^{\infty}\left|\Phi_{j}(0)\right|^{2}\right\}^{1 / 2} \leqslant b n^{-1 / 2}, \quad n^{1 / 2} \delta_{n}(w) \leqslant b ;
$$

for $n \geqslant n_{1}(b)$. The latter relation contradicts (19) and so the left-hand inequality (5) is established.

Theorem 1 is now completely proved.
Example. We consider the Jacobi weight function $w(\theta)$ on the unit circle,

$$
\begin{equation*}
w(\theta)=\left|e^{i \theta}-1\right|^{2 \gamma_{1}}\left|e^{i \theta}+1\right|^{2 \gamma_{2}}=4^{\gamma_{1}+72}|\sin \theta / 2|^{2 \gamma_{1}}|\cos \theta / 2|^{2 \gamma_{2}}, \tag{20}
\end{equation*}
$$

and the corresponding orthogonal polynomials $\Phi_{n}(z)$. An explicit expression for the reflection coefficients in this case has been obtained in [8, Sect. 2] (in formula (2.8) there, one has to replace n by $n+1$):

$$
\Phi_{n}(0)=\left(\gamma_{1}+(-1)^{n} \gamma_{2}\right)\left(n+\gamma_{1}+\gamma_{2}\right)^{-1}
$$

Let $k \geqslant 2$ be a positive integer. We introduce a GJWF $w_{k}(\theta)=w(k \theta)$. It is actually not hard to see that corresponding orthogonal polynomials $\Phi_{k, n}(z)$ admit representation (cf. [9]):

$$
\Phi_{k, k n+v}(z)=z^{v} \Phi_{n}\left(z^{k}\right), \quad n=0,1, \ldots, \quad v=0,1, \ldots, k-1
$$

Hence

$$
\Phi_{k, m}(0)= \begin{cases}\Phi_{m / k}(0), & m \equiv 0(\bmod k), \\ 0, & m \neq 0(\bmod k),\end{cases}
$$

so that

$$
0=\liminf _{n \rightarrow \infty} n\left|\Phi_{k, n}(0)\right|<\limsup _{n \rightarrow \infty} n\left|\Phi_{k, n}(0)\right|=\left|\gamma_{1}\right|+\left|\gamma_{2}\right| .
$$

2. Polynomials on the Real Line

We are now able to establish an analogue of Theorem 1 for the interval $[-1,1]$.

Theorem 2. Let $f(x)$ be a GJWF on the interval $[-1,1]$,

$$
\begin{equation*}
f(x)=g(x) \prod_{v=1}^{N}\left|x-x_{v}\right|^{2 \alpha_{v}} \tag{21}
\end{equation*}
$$

where

$$
-1 \leqslant x_{N}<x_{N-1}<\cdots<x_{1} \leqslant 1, \quad 2 \alpha_{v}>-1, \alpha_{v} \neq 0
$$

and $g(x)$ is a positive differentiable function such that

$$
\omega\left(\delta, g^{\prime}\right)=O(1 /|\ln \delta|), \quad \delta \rightarrow 0
$$

Let $p_{n}(x)$ be a system of orthonormal polynomials corresponding to the weight function $f(x)$ (21) and satisfying the recurrence formula

$$
x p_{n}(x)=a_{n+1} p_{n+1}(x)+b_{n} p_{n}(x)+a_{n} p_{n-1}(x)
$$

Then

$$
a_{n}=1 / 2+O(1 / n), \quad b_{n}=O(1 / n), \quad n \rightarrow \infty
$$

Proof. We can transfer to the unit circle using the standard transformation $w(\theta)=f(\cos \theta)|\sin \theta|$. It can be readily shown that the GJWF $w(\theta)$ satisfies the hypotheses of Theorem 1. Corresponding reflection coefficients $\Phi_{n}(0)$ and the coefficients a_{n}, b_{n} are related by means of the following formulas, which have actually been found by Ya. L. Geronimus [10, Sect. 31] (see also [11, formula (5.10)]):

$$
\begin{aligned}
& 4 a_{n}^{2}=\left(1+\Phi_{2 n-2}(0)\right)\left(1-\Phi_{2 n-1}^{2}(0)\right)\left(1-\Phi_{2 n}(0)\right), \\
& 2 b_{n}=\Phi_{2 n-1}(0)\left(1-\Phi_{2 n}(0)\right)-\Phi_{2 n+1}(0)\left(1+\Phi_{2 n}(0)\right) .
\end{aligned}
$$

The rest is immediate from Theorem 1.
By using the main Theorem 1 we are able to investigate the asymptotics of the second type of polynomials corresponding to the GJWF (2)-(4) and
the smoothness properties (absolute continuity and the absence of mass points) of the appropriate measure. These and some other problems regarding the second type of polynomials will be treated elsewhere.

References

1. G. Freud, "Orthogonal Polynomials," Pergamon Press, New York, 1971.
2. A. Zygmund, "Trigonometric Series," Vol. 1, Cambridge Univ. Press, Cambridge, 1977.
3. B. L. GolinskiI, Asymptotic representation of orthogonal polynomials, Uspekhi Mat. Nauk 35, No. 2 (1980), 145-196. [Russian]
4. P. Neval and V. Totik, Orthogonal polynomials and their zeros, Acta Sci. Math. (Szeged) 53 (1989), 99-104.
5. V. M. Badkov, Approximation of functions in uniform metric by Fourier series in orthogonal polynomials, Trudy MIAN SSSR 145 (1980), 20-62. [Russian]
6. B. L. Golinskir, Orthogonal polynomials on the unit circle with the generalized Jacobi weight, Izv. Akad. Nauk Armyan. SSR 13, No. 2 (1978), 87-99. [Russian]
7. Ya. L. Geronimus, "Orthogonal Polynomials," Consultants Bureau, New York, 1961.
8. B. L. Golinski, On asymptotic behavior of the prediction error, Teor. Veroyatnost. Primenen. 19, No. 4 (1974), 724-739. [Russian]
9. V. M. Badkov, On orthogonal polynomials, which are explicitely expressed in terms of Jacobi polynomials, Mat. Zametki 42, No. 5 (1987), 650-659. [Russian]
10. Ya. L. Geronimus, Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Transl. 3 (1962), 1-78.
11. A. Mate, P. Nevai, and V. Totik, Extension of Szegö's theory of orthogonal polynomials, II, Constr. Approx. 3 (1987), 51-72.
