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In the present paper we study generalized Jacobi weight functions on the unit
circle—the simplest weight functions with a finite number of algebraic
singularities—and asymptotic behavior of the reflection coefficients associated with
them. The real line analogues concerning the recurrence coefficients associated with
generalized Jacobi weight functions in the interval are obtained. € 1994 Academic

Press, Inc.

1. PoLyNOMIALS ON THE UNIT CIRCLE

Let w(f) be a weight function on the interval [—=, n) and let
{®,(z)} 7., denote the monic orthogonal polynomials, associated with this
weight function:

(1/27) jv (B wO) =0, neEml=e® b (2)=z"+ -,

(1)

In the present paper we investigate the behavior of the reflection coef-
ficients @,(0), corresponding to the generalized Jacobi weight functions
(GIWF) w(8):

w(0)=h(0) TT 1C—0u17%  {=explif), {, = exp(if,), 2)

v=1

where
—nLOy<By_ < - <O, <m; 2y, > —1,7,#0. 3)

Regarding to the regular factor h(8), we shall assume that it is positive
differentiable function and for its derivative h'(#) the relation

w(d, A')=0(1/|In d|); 60 (4)

holds, where w(4, /) is modulus of continuity of the function f(8).
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The following assertion is the main result of our paper.

THEOREM 1. For the GIWF w(8) (2)-(4)
0 <lim sup n |®,(0)] < oo (5)

holds.

In what follows C,, C,, ... denote positive constants depending on weight
function only. We write ||-]|,, 1 <p<co for the norm in L? space on the
unit circle () -||,, for sup-norm).

For the weight functions w(#), belonging to Szegé class, ie., In w(#) e L',
the principal tool is the Szegd function

D{w, z)=exp {(1/47:) f" (C+2)(¢—z)" ' 1Inw(h) dO}, { = exp(if).
For the GIWF w(8) (2) we have (cf. [1, Chap. §, Sect.3])
D(w,z)=D(h,z) [ (1—2(;7 "), {,=exp(if)). (6)

We start from the following statement.

LEMMA 1. For the function D(z)= D(w, z) (6) there exists a polynomial
T,(z) of degree at most n such that

(i) 11 =D(Q) T(O))l, = O(1/n), n— oc;
(i) D) Tu(Oll.=0(1), n—> o, {=e”.
Proof. To prove Lemma 1 we proceed in several steps.

Step 1. If the functions D(z) and D,(z) satisfy (i}-(ii), then so does
their product D(z)=D(z) Dy(z). Indeed, let polynomials T, (z)
correspond to the functions D;(z), j=1,2. Put I=[n/2] and T, (z)=
T, (z) T, 5(z). Then

1= D) T,(OIl < 1T =Dy(0) T, (D
DO T (Ol 11 = Do) T 2Ol = O(1/n);
D) To(Oll o« = 1D (L) T 1(0) DAL Ty 2O =O(1),  n—c0.

Thus, it is sufficient to ensure the correctness of relations (i)-(ii) for every
factor in (6).

Step 2. Let D(z)=1—z and

n

Qn(z)=m~"' } 2

k=1
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so that |Q,,]l.. = Q.(1)=1, |Q,|3=m~". Put
T(z)=(1—-2)"'(1-0}(2)), I=[n/3]
In this case

== T =1Q/)I3=1""=0(1/n)

) ) (7)
=0T (Ol =11-Q7 (<2
Let us note an identity
. 11— -
6=+ 2N T2 (140, S (1-k1D)3
from which it follows that
17O <I+1<n (8)

Step 3. Let D(z)=(1-2z2)*, O<a<l1. Since the function f(z)=
(1 —z)*~* is analytic in the unit disk D = {|z| <1} and continuous in the
closed unit disk, then there exists a polynomial P,,(z) of degree at most m
such that

(=0 =Pl < Cim* 2, 9
C, is an absolute constant (cf. [2, Chap. 3]). Put now
T.(z2)=P/(z)(Ti(2))>, I=[n/3],
so that

1= (=07 Tl < I = ((1=0) Tl
+HA =D TP (A=A =02 PO =1, + L.

The first term 7, is O(1/n) by virtue of Step 2. For the second term 7, we
have by (9)

L= =07 (B (1= 02 = PO,
<Cm [ =0 (R de

+ (10 (07 a0
nle|flgn

= Czna72{121 +122}.



120 LEONID B. GOLINSKII

In view of (8),

Lu<n?|  [l-g7do<2n’

16 <n—!

For I,, we have with regard to (7),

In=| (=02 1(1=0) Fy(0)[> o

nl<iflsn

<4 (1 =) 2 dB< Csn' =,

a8

Thus 1, =0(1/r) and so (i) is proved. To prove (ii} we note that, as follows
from (9),

(1=0P = (1 =0 PAOISC 1 =" n* 2, (10)
== 2POISC 1= 2% 2 (11)

Therefore for |0] <n ' we obtain, using (8) and (10),

sup (1= T (Ol = sup |(1=0)* PUNTH))I=0(1), n— o0,

10l <n-! Bl <n!
For n '< 6| <7 we have with regard to (7) and (11)

sup  [(1-0)* T,(0)

nl<|ll<n

= sup (1= TP I(1 =072 PO = 0(1),

nleillgn

when n — oo, which proves (ii) in the present case.

Step 4. From the considerations of Steps 1-3 it follows that the rela-
tions (i)-(ii) are valid for the functions D(z)=(1-2)% a>0. Let now
m>21 be a positive integer (for our purposes it is sufficient to consider
m=1). For D(z)=(1—z)~" polynomial T,(z)=(1—2z)" obviously
satisfies (i)-(ii). Hence relations (i)-(ii) are valid for D(z) = (1 — z)* for any
real o.

Step 5. Let D(z)=D(h, z). We denote by ¢,{z)=x,P,(z), x,>0 the
system of orthonormal polynomials, associated with w(8),

1720 [ 0,0 D) w(0) d0=35,,,, (12)



REFLECTION COEFFICIENTS 121

and let p*(z)=z" ¢,(1/2) be the reverse polynomials. As is known (cf. [3,
Thm. 1.2]), for the regular weight functions w(8) = h(8) (in particular, for
h(6), satisfying (4)), the following estimate holds:

ID~ (A, O)~ XN <Cilnnn™'w(1/n, k).

Under hypotheses (4) this implies (i)-(ii) for D(z)= D(h, z). Hence the
assertion of Lemma 1 is verified.

Proof of Theorem 1. We use the following expression for the reflection
coefficients (cf. [4, formula (4)]):

.0 =(k/2m) [ D0, ) B, 1) w() O

-7

=(/2m) [ (D710, 0= TN B, D)

x w(8) d0, k= lim k,.

n— oo

Here T,(z) is an arbitrary polynomial of degree at most n. Therefore

[Py O Cs [ 11=D0w, ) TUOND 0, 0) B, (O] w(0) . (13)

It is known (cf. [5, p. 29; 6]), that the orthonormal polynomials ¢,(z),
corresponding to the GIWF w(f) (2)-(4) admit the estimate on the unit
circle

Co [l {IE=Cl+(ne1)~ )7

v=1
N

<@ OIS CG T {8+ 1)1 77 » = exp(ib,).

v=1

(14)

The same estimate is obviously true for the monic orthogonal polynomials
@,(z) as well, since within the Szegd class

O<kg<K, <K<

Using the explicit form of the Szegd function D(w, z) (6) and the weight
function w(f) (2), we obtain

;e , . [ }
|D (M’C)(pn-#l(c)l ‘*(0)<C8 1—[ {[C_C‘.l+(n+1)’

v=1

ISEERE
gc*“‘{sc—c.,mml)‘}’ (13)

vedJ
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where J={v:1<v<N,y,<0}. Let a=(1/2) min, |0, ,— 60,]. Consider
the sets

r,=16:10-6,<an"'}, 1=, [=[na\

JjeJ

We have (see (13), (15))

— 1)1y Il
@, OI<C T I]—D(W,C)T"(C)IH{IC L+ (nt 1) } o

jes 1 vedJ |C—§v|
—_ 1)y 1) inl
+C9L|1—D(w,C)T,,(C)Il_[{K C“,‘f_(gr) } 0
veJ v

Let the polynomial T,(z) in the previous relation correspond to the func-
tion D(w, z) by Lemma 1. On the set [ we have |0 —6,} >an"' for every

ve J, so that

—2.| +(n+1)"‘}“'-'
H{ = <Cuo

ved
and by means of Lemma 1(i)
I<Cy I1=D(w, {) TOl,=0(1/n).
If 0e I, then by Lemma 1(ii) we have

_ 7. 1)1y
L[, 1= 0 T { B

9=9 _ 1] + (n+ 1)~
i(()-—0,’)_1| dg

<€t =0 O T, | |

; le

<Cpyn j Isin(0 — 6,)/2| ~'' do
I
= 0(1/n), n-— oo, (16)

and the right-hand inequality (5) is proved.
Proceeding to the proof of the left-hand inequality (S5), we consider the

value (cf. [7, Chap. 2]):

oo 1/2

5"(W)=Hl—KnK“'<P,‘.“(C)D(W,C)|!z=K‘{ > IK,-‘P,(O)IZ} - (17

j=n+1
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It easily follows from the right-hand inequality (5) (cf. [8, Thm. 4]) that
now
S, (w)=0(n""?), n— 0.
We will now show that
lim inf n*2 §,(w) > 0. (18)

n-—

It is convenient to distinguish the following two cases.

1. Assume, that y, <0, Let 4={0:]0—6,|<en '}, where a suf-
ficiently small ¢ >0 will be chosen later on. By the triangle inequality

172
(21)! 6,(w) > { J 1=Kk T102() DOw, 1)1 de}

1/2
>{] e 020 DOs O ab] 23/

Using the left-hand inequality (14) and the explicit form of the Szegd
function (6), we obtain, as above in (16),

|c—cl|+n-'}2'ﬂ'
—_—— do
E=Lil

>C15n-2lﬂ|r" |6|’2""'d0
~1

—&n

[ ka0 DO O dB > Co | {

=C,een g2l

The constant C,¢ here depends on the weight function w(8) only (but does
not depend on the choice of ¢). We can choose now the constant ¢ from the
condition C 4~ 2" >3, which entails

(21)!2 8,(w) > (317 = 2V2)(en )",

and so does the inequality (18).
2. Assume that y, > 0. By repeating the argument above, we obtain

1/2
(20" 8,00 2ain)' [ o020 DO, 0 0}

and as follows from the right-hand inequality (14),

- (SR
[ 1ok 02 DOw PO Cy | {m} a8

cn’l

sclgnz?lj 0] do

—en”

< Coen g™,
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Choosing the constant ¢ from the condition C,,&”" < 1, we arrive at the
inequality

(2m)'726,(w) > (212 = 1)(en "),

which proves (18).
Assume, on the contrary, that

lim sup n |®,(0)] =0,

ie., lim,_ . n|®,0) =0, and hence n |®,(0)] < b, n=n,(b) for any

0 < b <liminf n"2 8 (w). (19)

n— I

But then (see (17))

o 1/2
6,,(w)<{ Y |¢j(0)l2} <bn ', n 5 (w)<b;

J=n+1

for n=n,(b). The latter relation contradicts (19) and so the left-hand
inequality (5) is established.

Theorem 1 is now completely proved.

ExampPLE. We consider the Jacobi weight function w(f#) on the unit
circle,

w(0)=|e” — 1|2 [e® + 1|22 =4"1%72 |sin /2| |cos 0/2|*7, (20)

and the corresponding orthogonal polynomials @,(z). An explicit expres-
sion for the reflection coefficients in this case has been obtained in
[8, Sect. 27 (in formula (2.8) there, one has to replace n by n+1):

D,0)=(y;+(=1)"y:)n+7, +7y,) "

Let k> 2 be a positive integer. We introduce a GIWF w,(8) = w(k0). It is
actually not hard to see that corresponding orthogonal polynomials
@, ,(z) admit representation (cf. [9]):

Dy ins(2)=2"D,(25), n=0,1,.., v=0,1,.. k-1
Hence

D,,.(0), m=0 (mod k),

;. ,(0) = {0’ m#0 (mod k),
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so that
O=liminfn |®, ,(0)] <limsupn [P, (0) =y, + 72l

n-— G

2. POLYNOMIALS ON THE REAL LINE

We are now able to establish an analogue of Theorem 1 for the interval

[-11]
THEOREM 2. Let f(x) be a GIWF on the interval { —1, 1],

f(x)=g(x) [T Ix—x, 1>, (21)

v=1
where
—I€<xy<xy_ < ---<x;<1, 20, > —1, a,#0,
and g(x) is a positive differentiable function such that
w(9, g')=0(1/]ln d), é—0.

Let p,(x) be a system of orthonormal polynomials corresponding to the
weight function f(x) (21) and satisfying the recurrence formula

xpn(x)=an+1pn+l(x)+bnpn(x)+anpn* l(x)'
Then
a,=1/2+ 0(1/n), b, = 0(1/n), n-» 0.

Proof. We can transfer to the unit circle using the standard transforma-
tion w(f)=/f(cos 0) |sin §]. It can be readily shown that the GIWF w(8)
satisfies the hypotheses of Theorem 1. Corresponding reflection coefficients
@,(0) and the coefficients a,, b, are related by means of the following for-
mulas, which have actually been found by Ya. L. Geronimus [ 10, Sect. 31]
(see also [11, formula (5.10)]):

d4al=(1+P,, ,(0))(1—P3,_ (0))(1—,,(0)),
2bn = ¢2nA 1(0)(1 - ¢2n(0)) - ¢2n+ 1(0)(1 + ¢2n(0))
The rest is immediate from Theorem 1.

By using the main Theorem | we are able to investigate the asymptotics
of the second type of polynomials corresponding to the GJWF (2}-(4) and
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the smoothness properties (absolute continuity and the absence of mass
points) of the appropriate measure. These and some other problems

re

1
2
3

4.

garding the second type of polynomials will be treated elsewhere.
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